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I. Introduction

Many important results in ergodic theory of stochastic dynamical
systems have been obtained for

invariant measures and stationary processes.

We have established ergodic theory (any invariant set has
(invariant) measure 0 or 1) for

(1) Random periodic processes (Feng-Z. (JDE 2020))

(2) Random quasi-periodic processes (Feng-Qu-Z. (JDE 2021),
2023+a)

(3) Processes under nonlinear expectations (Feng-Z. (SIMA 2021),
Feng-Wu-Z. (SPA 2021), Feng-Huang-Liu-Z. 2023+)
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Observations and questions:

• Time series is seen as a pathwise process.

• Periodicity: DFT approach and its shortfalls.

• Could the random periodic processes and their ergodic theory be
developed to deal with time series datasets? Is it better?

This is answered now in part by results in Feng-Liu-Z. CNSNS
2023.
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II. Random periodic paths and periodic measures

Consider a probability space (⌦,F ,P) and a Polish space X, let
�(t, s) : ⌦ ⇥ X! X be a stochastic semiflow over a metric
dynamical system (⌦,F ,P; (✓t)t2R).

Definition 1

(Z.-Zheng (JDE 2009), Feng-Z.-Zhou (JDE 2011), Feng-Z. (JFA
2012)) A random periodic path of period T is an F -measurable
map Y : R ⇥⌦! X such that for almost all ! 2 ⌦,

�(t, s,!)Y(s,!) = Y(t,!), 8s 2 R, t � s (1)

and for any s 2 R,

Y(s + T ,!) = Y(s, ✓T!). (2)
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Define the transition probability of Markovian dynamical system �:

P(t, s, x,B) := P(! : �(t, s,!)x 2 B), for any B 2 B(X).

Definition 1
(Feng-Z. (JDE 2020), Feng-Wu-Z. (JFA 2016), Feng-Liu-Z. (ZAMP
2017)) A measure valued function {⇢s}s2R in P(X) is an
entrance measure on (X,B) if

⇢t(B) =
Z

X
P(t, s, x,B)⇢s(dx), s 2 R, t � s, B 2 B(X). (3)

Periodic measure: ⇢T+s = ⇢s,
Invariant measure: ⇢s = ⇢0 for all s.

Quasi-periodic measure: Feng-Qu-Z. JDE (2021)
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Theorem 2
(Feng and Z. (JDE 2020))
Random periodic paths “ <=> ” periodic measures.
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III. Ergodicity: homogeneous case

⇢T+s = ⇢s, P⇤t ⇢s = ⇢t+s, t 2 R+. (4)

Observation:

⇢̄ =
1
T

Z

[0,T)
⇢sds (or

X
if discrete)

is an invariant measure of {Pt}t2R+ . (thus have ergodic theory: any
invariant set has measure ⇢̄ 0 or 1).
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Inhomogeneous case

Lifting: define
X̂ = [0,T) ⇥ X,

and for any A 2 B(X̂), Ar-the r section of A,

P̂(t, (s, x),A) =
Z T

0
�t+s mod T (dv)P(t + s, s, x,Av),

⇢̂s(A) =
Z T

0
�s mod T (dv)⇢s(Av).

Then one can prove that

P̂⇤t ⇢̂s = ⇢̂t+s, ⇢̂s+T = ⇢̂s.

Invariant measure:
¯̂⇢ =

1
T

Z T

0
⇢̂sds.
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weakly mixing ergodic ergodic new-1
Feng-Z. JDE 20

Markovian 1 1 {ei 2m⇡t
T }m2Z

semigroup simple simple simple
Pt unique on only on

eigenvalues unit circle unit circle
(von Neumann)

infinitesimal 0 0 {i 2m⇡
T }m2Z

generator simple simple simple
L unique on only on

eigenvalues imaginary axis imaginary axis
convergence relatively average average
to invariant measure 1 (PS-mixing)
measure set (Birkhoff ET)

processes stationary stationary random periodic
(aperiodic)
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Example 3

There is a unique entrance measure. to

dXt = (Xt � X3
t + f (t))dt + dWt. (5)

Periodic Measure: f (t) = A cos(↵t) (Benzi-Parisi-Sutera-Vulpiani’s
climate change model (1983)): there is a unique periodic measure
and it is ergodic (Feng-Z.-Zhong (JDE 2023)).

The uniqueness is significant in explaining the transitions

between the two wells (two climates) as otherwise there should be
two periodic measures instead of one, together with PDE for the
expected switching time (Feng-Z.-Zhong (Physica D 2021)),
provided a rigorous proof for the result proposed by Parisi et al.

Quasi-periodic measure: f (t) = A1 cos(↵1t) · · · + An cos(↵nt)
(quasi-periodic measure, extended BPSV climate change model,
Feng-Qu-Z. (2023+a)), unique and ergodic
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Figure: ⇢̂0 ⇢̂625 ⇢̂1250

Figure: ⇢̂1875 ⇢̂2500 ⇢̂3125

Figure: ⇢̂3750 ⇢̂4375
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Contributed to the following work:

–climate dynamics: Chekroun, Simonnet and Ghil (Physica D
(2011))

–stochastic bifurcations: Wang (Nonlinear analysis 2014)

–random attractors: Bates-Lu-Wang (Physica D 2014)

–stochastic resonance: Cherubini-Lamb-Rasmussen-Sato
(Nonlinearity 2017), Feng-Zhao-Zhong (JDE 2023, Physica D
2021), Feng-Liu-Zhao (JCAM 2021, 2023+), Feng-Qu-Z. (2023+a)

–stochastic horseshoe: Huang-Lian-Lu (2019/2021)

–random almost periodic solutions: Cheng-Liu (2019),
Zhang-Zheng (2019), Raynaud de Fitte (SD 2020)
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Impacts continued

–stochastic oscillation: Engel-Kuehn (CMP 2021)

–Linear response of SDEs and homogenizations : Branicki-Uda
(RMS 2021), Uda (SPA 2021)

–SFDEs, SDEs, SPDEs, McKean-Vlasov: Gao-Yan (2018),
Song-Song-Zhang (SIMA 2020), Dong-Zhang-Zheng (2021, 2022),
Liu-Lu (2021, 2022), Wu-Yuan (JTP 2023), Bao-Wu (2022),
Feng-Qu-Z. (2023+b)...

–Large deviations: Gao-Liu-Sun-Zheng (2022)

–Synchronizations: M Engel, G Olicón-Méndez, N Unger, S
Winkelmann (2022)

–Alternations: Engel-Kuehn (CMP 2021), Sun-Zheng (CMB 2023)

Huaizhong Zhao (Durham and Shandong) talk at The 18th Workshop on Markovian Processes and Related Topics Tianjin University 29 July -2 August 2023Periodic measures and Wasserstein distance for analysing periodicity of time series datasets



IV. Non-randomness of the period

Many people will have expected that the period of a random
periodic path might be random rather than deterministic. Note in
the Definition 1, as a basic assumption of this paper, the period T
is a deterministic number rather than a random variable. Note

”random periodic”

does not necessarily mean

”random period”.
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Observation (Feng-Zhao (JDE 2020)): Setting �(s,!) := Y(s, ✓�s!),
then Y(s + T ,!) = Y(s, ✓T!) for all s 2 R if and only if
�(s + T ,!) = �(s,!) and note also that for almost all ! 2 ⌦,

�(t,!)�(s,!) = �(s + t, ✓t!), for any t, s 2 R, (6)

is equivalent to (1).
Consider a random path Y of �. It is a function R ⇥⌦! X
satisfying �(t, ✓s!)Y(s,!) = Y(s + t,!) for any t 2 R+, s 2 R.
Consider �(s,!) := Y(s, ✓�s!). Assume

T(!) := inf{t > 0|�(s + t,!) = �(s,!) for all s } (7)

exists.

Theorem 2

Assume a measurable function � : R ⇥⌦! X exists such that (6)
holds for a.e. ! 2 ⌦, ✓ is ergodic and T : ⌦! R+ defined by (7)
exist. If T is positive P-a.s., then it is constant P-a.s.
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V. LNN with test period

Let Y be a random periodic path of random dynamical system �. If
(⌦,F ,P, (✓kT )k2N) is ergodic, then for any � 2 B(X), t 2 R,

1
K

K�1X

k=0

I� (Y(t + kT ,!))! EI�(Yt(·)) = ⇢t(�) (8)

as K ! 1 P-a.s. and in L2(⌦, dP).
However, the result itself may not be that useful in applications as
• the period T is often unknown
• slight difference of the value T that appears on the left hand side
of (8) can result in some significant difference to the convergence
of (8).
Thus it is crucial to study (8) for Y(t + k⌧,!), where ⌧ could be
different from T.
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Set ⌦̃ = [0,T) ⇥⌦, where T > 0 is constant and taken as the
period of the random periodic path.
Note first for any fixed t � 0, there exists mt 2 N and jt 2 [0,T) such
that t = mtT + jt. For any t � 0, (s,!) 2 ⌦̃, set

⇥̃t(s,!) = (jt+s, ✓mt+sT!),

and for any A 2 B([0,T)) ⌦ F , define

P̃(A) =
1
T

Z

[0,T)
P(As)ds,

where As := {! 2 ⌦ : (s,!) 2 A} being the s-section.

Lemma 3

The map t 7! ⇥̃t is a semigroup and preserves P̃.
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Theorem 4

There exists a random measure function ⇢ such that

1
K

K�1X

k=0

�Y(s+k⌧,!)(�)! ⇢s,!(�), (9)

P̃-a.s. and in L2(⌦̃, dP̃). Moreover, ⇢s,! = ⇢!̃ = ⇢⇥̃⌧!̃.

Key in the proof:

1
K

K�1X

k=0

�Y(s+k⌧,!)(�) =
1
K

K�1X

k=0

I� (Y(js+k⌧ + ms+k⌧T ,!))

=
1
K

K�1X

k=0

I�
�
Y(js+k⌧, ✓ms+k⌧T!)

�

=
1
K

K�1X

k=0

I�
⇣
Y(⇥̃k⌧!̃)

⌘
.
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Now we consider the case that ⌧ and T are rationally dependent.
Let integers q⇤, p⇤ be co-prime to each other such that

q⇤⌧ = p⇤T . (10)

Then for all s,

s + q⇤⌧ = js + ms+q⇤⌧T = s + p⇤T (11)

and q⇤ is the smallest of such integer satisfying (11).
Following Theorem 4, it is easy to prove the following result.

Theorem 5

Assume assumptions of Theorem 4 and that ⌧ and T are rationally
dependent with q⇤, p⇤ defined by (10). If ✓p⇤T : ⌦! ⌦ is ergodic,
then

1
K

K�1X

k=0

�Y(s+k⌧,!)(�)! ⇢s(�)

for P̃-a.s. !̃ 2 ⌦̃, and in L2(⌦̃, dP̃) and ⇢s is independent of ! for
almost all s.
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Proof.
Note

1
K

K�1X

k=0

I�(Y(s + k⌧, ✓p⇤T!)) =
1
K

K�1X

k=0

I�(Y(s + k⌧ + p⇤T ,!))

=
1
K

K�1X

k=0

I�(Y(s + (k + q⇤)⌧,!)) =
1
K

K+q⇤�1X

k=q⇤
I�(Y(s + k⌧,!))

!⇢s,!(�) (12)

P̃-a.s. and in L2(⌦̃, dP̃). Here we used Theorem 4 in the above
convergence. But 1

K
PK�1

k=0 I�(Y(s + k⌧, ✓p⇤T!))! ⇢s,✓p⇤T! a.s. by
Theorem 4 again. Thus ⇢s,! = ⇢s,✓p⇤T! P̃-a.s. It follows that
⇢s,! = ⇢s,✓p⇤T! for almost all ! 2 ⌦. It then follows from ergodic
theory as ✓p⇤T : ⌦! ⌦ preserves P and is ergodic that ⇢s,! is
independent of !. ⇤
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In many situations, the underlying noise is Brownian motion. In this
case the probability space (⌦,F ,P) is a Wiener space and the
measure preserving dynamical system ✓ : I ⇥⌦! ⌦ is given by
(✓t!)(s) = W(t + s) �W(t).

In Feng-Qu-Z. (Nonlinearity 2020), it was proved that the metric
dynamical system given as the shift of Brownian motions is
ergodic. The theorem is stated below.

Theorem 6

The canonical dynamical system of Brownian motion
⌃ = (⌦,F ,P, (✓t)t2T) (T = R+ or R) and their discrete dynamical
system ⌃T = (⌦,F ,P, (✓nT )n2I) (I = N or Z) are ergodic.

Huaizhong Zhao (Durham and Shandong) talk at The 18th Workshop on Markovian Processes and Related Topics Tianjin University 29 July -2 August 2023Periodic measures and Wasserstein distance for analysing periodicity of time series datasets



VI. LNN and Bézout’s identity

Consider two integers p, q � 1 satisfying p  q. All the results are
still true when p > q with a slight modification of proofs. Define
S = {0, 1, 2, · · · , q � 1}, and a dynamical system on the finite integer
field S, T : S! S by

T(i) = (i + p)|q, i 2 S (13)

and the trace of i as

S(i) = {Tn(i)|n 2 N} = {j 2 S|j = i + k1p � k2q, k1 2 N
+, k2 2 N

+
[ {0}},

where i 2 S . The following two lemmas are equivalent to Bézout’s
identity.

Huaizhong Zhao (Durham and Shandong) talk at The 18th Workshop on Markovian Processes and Related Topics Tianjin University 29 July -2 August 2023Periodic measures and Wasserstein distance for analysing periodicity of time series datasets



Lemma 7

(1) The integers p, q are co-prime to each other if and only if
S(0) = S.

(2) The integers p, q have a greatest common divisor r if and only if
for 0  i < r,

S(i) = {i, i + r, i + 2r, · · · } \ S = {i, i + r, · · · , i + (q⇤ � 1)r},

where q⇤ = q
r .

Huaizhong Zhao (Durham and Shandong) talk at The 18th Workshop on Markovian Processes and Related Topics Tianjin University 29 July -2 August 2023Periodic measures and Wasserstein distance for analysing periodicity of time series datasets



Theorem 8

Assume the metric dynamical system (⌦,F ,P, (✓kp⇤q)k2N) is
ergodic. Then for any i 2 N, A 2 B(R), p 2 N+,

pi,p
K (A) :=

1
K

K�1X

k=0

�Yi+kp(!)(A)!
1
q⇤

X

u2S(i)

⇢u(A) as K ! 1,

a.s. and in L2(⌦, dP). In particular, when p, q are co-prime,

pi,p
K (A)!

1
q

q�1X

u=0

⇢u(A) as K ! 1

and when p = q,

pi,p
K (A)! ⇢i(A) as K ! 1,

a.s. and in L2(⌦, dP).
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VII. Quantifying periodicity by Wasserstein distance

Let d � 1 and P(Rd) be the set of all probability measures on Rd.
For ↵ � 1 and ⇢, ⌫ 2 P(Rd), consider the ↵th Wasserstein distance
between them as

W↵(⇢, ⌫) := inf
⇠2H(⇢,⌫)

8>><
>>:

 Z

Rd⇥Rd
|x � y|↵⇠(dx, dy)

! 1
↵

9>>=
>>; ,

where H(⇢, ⌫) is the set of all probability measures on Rd
⇥ Rd with

marginals ⇢ and ⌫.
It is very natural to use the Wasserstein distance to describe the
periodicity of a periodic measure and to detect periodicity in a time
series dataset, as i 7! W↵(⇢1, ⇢i) is a real valued periodic function.
In this subsection, we will establish the theoretical result on the
convergence of empirical distributions in the Wasserstein distance.
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In order to prove the main result of this section (Theorem 10), we
recall the following result in Fournier-Guillin (2015).
Consider first on (�1, 1]d, denote Pl as the natural partition of
(�1, 1]d into 2dl disjoint, equal-distance sets. For example, when
d = 1, Pl = {(�1 + k

2l�1 ,�1 + k+1
2l�1 ]}2l

�1
k=0 . To extend to Rd

⇥ Rd, we
introduce B0 := (�1, 1]d and Bn := (�2n, 2n]d

\(�2n�1, 2n�1]d for
n � 1. In Fournier-Guillin (2015), the authors proved the following
lemma:

Lemma 9

Let d � 1 and ↵ > 0. For all pairs of probability measures ⇢, ⌫ on
Rd,

W↵↵ (⇢, ⌫)  ↵,dC↵
X

n�0

2↵n
X

l�0

2�↵l
X

F2Pl

|⇢(2nF \ Bn) � ⌫(2nF \ Bn)|,

(14)
with the notation 2nF := {2nx : x 2 F} and where
↵,d := 2↵d↵/2(2↵ + 1)/(2↵ � 1) and C↵ := 1 + 2�↵/(1 � 2�↵).
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Theorem 10

Assume all the conditions of Theorem 8 hold and there exists � > 0
such that for all t,

R
R
|x|�+1⇢t(dx) < 1. Then as K ! 1,

E[W1(⇢i,p
K , ⇢

i,p)]! 0.

Corollary 11

Assume all the conditions of Theorem 10 hold. There exists a
subsequence Km ! 1 as m! 1 such that
W1(⇢i,p

Km
, ⇢j,p

Km
)! W1(⇢i,p, ⇢j,p) as m! 1 for all i, j 2 {0, 1, · · · , r � 1}

a.s.
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Example 4

Consider the following stochastic differential equation (SDE),

dX(t) =
✓
�⇡X(t) + sin

✓⇡t
2

◆
+ 1

◆
dt +

✓
0.1 + 0.6 sin

✓⇡t
5

◆◆
dWt (15)

Figure: Numerical simulation of the solution to SDE (15)
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Figure: Plots of histograms and density functions of periodic measures
for i = 1, · · · , 10.
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Figure: Plots of histograms and density functions of periodic measures
for i = 11, · · · , 20.
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Figure: Wasserstein distance W(⇢1, ⇢i), i = 1, 2, · · · , 40
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VI. The periodic measure and test period LNN algorithm
to detect the true period

• Challenging question: the true period q of the random periodic
process or time series may be unknown to us.

• The point is that the period, though may be unknown to us, exists
in some sets of data.

• Our result gives a way to detect the period using test periods.
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Note

(i) ⇢i,p depends on the test period p when the true period q is
regarded as fixed.

(ii) i 7! ⇢i,p has periodicity of period r, where r is the greatest
common divisor of p and q. If it turns out that
• i 7! ⇢i,p is aperiodic, then p, q are co-prime.
• If i 7! ⇢i,p is periodic with period r, then r divides q.
• At p = q, i 7! ⇢i,p has maximum period, in other words, if the
period of i 7! ⇢i,p is maximised at certain p, then q = p.
In this context, the question remains to ask is: how do we know the
period of i 7! ⇢i,p is maximised at certain p?
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•We assume as a prior knowledge that q  Q for certain integer
Q. Note that any integer number can be decomposed as

q = rn1
1 rn2

2 · · · r
nm
m , (16)

where r1 < r2 · · · < rm are prime numbers and n1, n2, · · · , nm are
positive integers.

Huaizhong Zhao (Durham and Shandong) talk at The 18th Workshop on Markovian Processes and Related Topics Tianjin University 29 July -2 August 2023Periodic measures and Wasserstein distance for analysing periodicity of time series datasets



•We start from the test period p = 2. For large N, consider the
map of empirical measure approximation

i 7! ⇢i,p
K =

1
K

K�1X

k=0

�Yi+kp(·). (17)

• If initially (17) is approximately an invariant measure, it means 2
or any power of 2 is not in the decomposition (16).
• If (17) appears to have period 2, then it means that 2 is a factor of
q. Then we can continue to test p = 22, 23, · · · , 2r1 , for r1  [log2 Q],
then stop at one step p = 2j0+1 when 2j0+1 is no longer the period of
i 7! ⇢i,·

K (but 2j0 is). In this case we know that 2j0 is a factor of q and
j0 is the maximum power of factor 2· of the number q.
•We can decide any of the prime numbers and their powers
appearing in the decomposition (16) by applying the above method
for other possible p (noting the prior knowledge q  Q here), thus
eventually find the period q.
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Example 4 (continued)

Figure: Analysis of empirical measures of sub-datasets {y(i + kp)}K�1
k=0

when p = 2
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Figure: Analysis of empirical measures of sub-datasets {y(i + kp)}K�1
k=0

when p = 4
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Figure: Analysis of measures of sub-datasets {y(i + kp)}K�1
k=0 when p = 8
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Figure: i 7! W(⇢1,8
K , ⇢

i,8
K ), i = 1, 2, · · · , 16
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Figure: Analysis of measures of sub-datasets {y(i + kp)}K�1
k=0 when p = 3
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Figure: The Wasserstein distances i 7! W(⇢1,p
K , ⇢

i,p
K ) for different p = 5, 25
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Figure: Periodogram of dataset generated from SDE (15

)

We use the function ”spec.pgram(·)” in the package STATS in R
Language in which it calculates the periodogram using a fast
Fourier transform, the periodicity reflecting to the discrete dataset
is 4 on the mean trend and 10 on the noise fluctuations
respectively. This suggests that the DFT method only detects the
periodicity of the mean trend but not sensitive to the periodicity of
the noise!
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Example 5

Consider the following SDE,

dX(t) =
✓
�⇡X(t) + 0.1 sin

✓⇡t
2

◆
+ 1

◆
dt +

✓
0.1 + 10 sin

✓⇡t
5

◆◆
dWt,

(18)

with X(0) = x. In this example, the periodicity of mean is weak and
the noise perturbation is strong.
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Figure: Periodograms of datasets {y(t)}nt=1 for different datasize n

Remark: the DFT is not robust.
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Figure: Figures of the Wasserstein distance W(⇢1, ⇢i) for i = 1, · · · , 40
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Example 6

The dataset {y(t)} we used in this example is the monthly average
maximal temperature in Oxford. It contains 1954 monthly data for
almost 163 years from Jan. 1853 to Oct. 2015, which are
computed from the daily maximal temperature records. Part of the
data is plotted in Figure 17.

Figure: Daily maximum temperature in Central England
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Figure: Wasserstein distance i 7! W(⇢1, ⇢i) for i = 1, · · · , 24
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THANK YOU!
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